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The conservation of energy, linear momentum, and angular momentum of the electromagnetic field in linear
dielectric media with arbitrary dispersion and absorption is studied in the framework of an auxiliary field
approach in which the electric and magnetic fields are complemented by a material field. This material field
depends on a continuous variable w, and describes harmonic motions of the charges with eigenfrequency w. It
carries an electric dipole moment and couples as such to the electric field. The equations of motion of the
model are equivalent to Maxwell’s equations in an arbitrary dispersive and absorbing dielectric and imply that
several quantities are conserved. These quantities may be interpreted as the energy, momentum, and angular
momentum of the total system, and can be viewed as the sum of the corresponding quantities of the field and
matter subsystems. The total momentum turns out to be equal to the Minkowski momentum plus a dispersive
contribution. The total energy and total momentum of a wave packet both travel with the group velocity, while

the ratio of total momentum and total energy is given by the phase velocity.

DOI: 10.1103/PhysRevE.73.026606

I. INTRODUCTION

The linear momentum of light in dielectric media is a
complicated concept, as evidenced by the variety of views on
the subject that can be found in the literature. Most of the
work focuses on the Abraham and Minkowski forms for the
electromagnetic momentum (see [1] for a review). Different
approaches to the problem can be found in the papers by
Gordon [2], Nelson [3], Garrison and Chiao [4], Loudon and
co-workers [5,6], Obukhov and Hehl [7], and Mansuripur
[8]. This list of references is far from comprehensive, but
gives a fair view of the different approaches.

Several aspects of the momentum concept are very subtle
and do not lend themselves to easy understanding. In this
paper, two of these aspects are studied in some detail. The
first is the role of dispersion and dissipation. The dynamics
of dissipative systems cannot be described by the theoretical
tools that are frequently used for conservative systems, in
particular the canonical framework based on the use of
Lagrangians and Hamiltonians. For that reason it is not clear
how to define momentum, a conserved quantity, for dissipa-
tive systems. The second aspect concerns the difference be-
tween uniformity of space and homogeneity of matter. The
invariance for translations of the total system gives rise to
conservation of momentum, the invariance for material dis-
placements of the dielectric gives rise to conservation of
pseudomomentum. Depending on the experimental circum-
stances one or the other, or even a combination of both types
of momenta seems useful. The difficulty in describing dissi-
pative systems can be overcome, at least in some cases, by
making the system larger. Additional degrees of freedom that
interact with the dissipative system can be introduced so that
the total system is conservative. It is the goal of this paper to
find such an enlarged system description, investigate the at-
tendant conservation laws for the enlarged system, and inter-
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pret the physical meaning of these conserved quantities.

The starting point of this paper is an auxiliary field model
for the description of electromagnetic fields in linear dielec-
tric media with arbitrary dispersion and absorption intro-
duced by Tip [9,10]. A similar model has later been proposed
by Figotin and Schenker [11]. The basic variables of the
theory are the electric field E and magnetic induction B and
an auxiliary field F representing the material degrees of free-
dom interacting with the electromagnetic field. The material
field F effectively describes the harmonic motions of the
charges inside the dielectric. A difference between the elec-
tromagnetic fields E and B and the material field F is that the
former depend on position r and time ¢ only, whereas the
latter depends on a third continuous variable w as well. This
third variable can be interpreted as the (angular) eigenfre-
quency of the harmonic material motions. The electromag-
netic and material fields interact through a dipole coupling.
The coupling is proportional to a function ¢(w) which turns
out to be (the Fourier transform of) the conductivity, which
for a dielectric may be defined as &;(w)w, where €,(w) is the
imaginary part of (the Fourier transform of) the dielectric
function. The strength of the model is that the equations of
motion are formally equivalent to the set of equations con-
sisting of Maxwell’s equations and the constitutive relation
between the dielectric displacement D and E for an arbitrary
dispersive and absorbing medium. The equations of motion
can be derived from the standard variational principle based
upon the action being the integral over space and time of the
Lagrangian density.

The canonical framework defined by the Lagrangian den-
sity implies the existence of several conserved quantities,
which may be interpreted as the energy, momentum, and
angular momentum of the total system, the total system con-
sisting of the electromagnetic field and the material system.
The conservation laws will be derived from the equations of
motion of the model. Alternative proofs based on Noether’s
theorem are possible but will not be presented. For each
conserved quantity a density p and a flow v may be defined
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satisfying a transport equation of the form d,p+V-v=0 (with
obvious generalization to conserved quantities with a vecto-
rial character). Balance equations for two subsystems, for
example the “field” and “matter” subsystems, have the form

(9,pl+V~V1=—Q, (1)

&Ip2+V'V2:Q, (2)

where p=p;+p, and v=v;+v,, and where Q represents the
dissipation of field energy, momentum or angular momentum
from subsystem 1 to 2. It turns out that the exchange of
energy, momentum, and angular momentum between field
and material parts is such that the dissipation integrated over
the duration of the interaction is always positive. This irre-
versibility is related to the coupling of the electromagnetic
degrees of freedom to a continuum of harmonic oscillators,
rather than to a finite number of degrees of freedom.

The split of the conservation laws into balance equations
for the field and material subsystems is to some extent arbi-
trary, and various definitions will do. As a consequence the
dissipation of energy, momentum, and angular momentum of
the field to matter are also ambiguous. A key point of inter-
pretation is thus how to relate these quantities to the ab-
sorbed heat, force, and torque on the medium that are actu-
ally observed in experiment. It may therefore be the case that
different experimental circumstances require the application
of different descriptions of momenta and forces. The answer
to the Abraham-Minkowksi debate in this view is not a defi-
nition of “the” momentum of light in dielectric media but
rather a prescription of when to use which type of momen-
tum. An attempt is made in this paper to find out for which
physical situation the total field-plus-matter momentum of
the auxiliary field model is a useful quantity.

The main shortcoming of the auxiliary field model is that
it does not take into account deformation or displacement of
the material medium. It is assumed that the position of each
material point is kept fixed throughout the interaction with
the electromagnetic field. This implies that the distinction
between the space-fixed coordinate frame and the coordinate
frame fixed to the material points is lost so that a clear iden-
tification as to which quantity is momentum and which quan-
tity is pseudomomentum cannot be made. This indistinguish-
ability of uniformity of space and homogeneity of matter has
the consequence that only one meaningful momentumlike-
conserved quantity exists within the model. This total system
momentum corresponds to what is called pseudomomentum
by Gordon [2], wave momentum (the sum of momentum and
pseudomomentum) by Nelson [3] and canonical momentum
by Garrison and Chiao [4].

The paper is organized as follows. In Sec. II the equations
of motion are derived and shown to be equivalent to Max-
well’s equations in general linear dielectrics. The conserva-
tion laws are treated in Sec. III, and Sec. IV focuses on the
energy and momentum of a one-dimensional wave packet.
The paper is concluded in Sec. V with a discussion of the
obtained results and an outlook on possibilities for future
explorations.

Concerning the notation, it is mentioned that in the fol-
lowing the dependence of E and B on position r and time ¢
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and the dependence of F on (angular) eigenfrequency w,
position r, and time ¢ is suppressed, except when this com-
pact notation can give rise to ambiguity. Vector notation is
used if convenient and the tensor notation in all other cases.
The partial derivative with respect to time is denoted by d,,
the partial derivative with respect to the spatial coordinates
by d,, where a=x,y,z, and the Einstein summation conven-
tion is used. Partial derivatives only apply to the quantity
directly following the derivative unless brackets indicate oth-
erwise. The tensor J,4 is the Kronecker tensor (J,5=1 if a
= and 0 otherwise), and the tensor €,g, is the Levi-Civita
tensor (€,5,=1 for aBy even permutations of xyz, —1 for
odd permutations, and O otherwise).

II. EQUATIONS OF MOTION

The action is the integral over time and space of the La-

grangian density
1=fdtfd3r£, 3)

where the Lagrangian density is the sum of an electromag-
netic contribution, a contribution from the material field, and
an interaction contribution

1 ool
L= 28w 2 [ (08 o 28 K]
2 2 ™J

(4)

The function ¢(w) is positive for all nonzero w and defined
for negative angular frequencies by 6(w)=d(-w). The ab-
sence of free charges and currents implies that 6(w)—0 if
w—0. It may be defined for complex w by analytical con-
tinuation and is assumed to have no poles in the upper half
complex plane (in view of causality). The electromagnetic
part of the Lagrangian density is just the vacuum electromag-
netic Lagrangian density, the material part describes a con-
tinuous set of harmonic oscillators, and the interaction term
describes the interaction of the electric field with a continu-
ous set of electric dipoles. The polarization P is thus entirely
defined in terms of the material field F

280 *

P="—"| dodé(w)F. (5)
n

0

The dielectric displacement D and magnetic field H are then
defined by

oL 2 *
=—=gE+ ﬂf dwé(w)F, (6)
z?E ar 0
L 1
H=-"—=—B8. (7)
B

The scalar potential @ and vector potential A are introduced
via

E=-Vd-0A, (8)
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B=V XA, )
which solves the two homogeneous Maxwell equations

VXE+dB=0, (10)

V.B=0. (11)

The Euler-Lagrange equations for the potentials are the two
“inhomogeneous” Maxwell equations where we use quotes
because in the present context there are no free charges and
currents so that these equations are in fact homogeneous as
well

V.-D=0, (12)

VXH-4D=0, (13)

which can be demonstrated with textbook manipulations
[12,13].

The Euler-Lagrange equation for the material field F is
the equation of a driven harmonic oscillator

9’F + o’F =E. (14)

The inhomogeneous solution of this equation is (with depen-
dence on w and ¢ explicit)

Flw,?) = foc dt'G(w,t —1t")E(t'), (15)

where G(w, 1) is a Green’s function of the harmonic oscillator
equation. The homogeneous solution is not present in this
classical theory. However, in the quantum theory it must be
taken into account. There it describes a noise polarization, a
quantity which can even be interpreted as the basic ingredi-
ent of the quantum theory on which all other fields depend
[14-17]. In the classical theory it turns out that the solution
is causal provided the Green’s function is chosen to be the
retarded Green’s function

sm(wt)

Glw,1) = 60(1) (16)

where 6(¢) is the step function [6(r)=1 if >0, 6(r)=1/2 if
t=0, 6(r)=0 if 1<0]. The retarded Green’s function has a
Fourier representation

G(w,t) = f By —(w +l7’)2 exp(—iw't), (17)

where 7y is a positive infinitesimal quantity. The resulting
expression for the material field F leads to a dielectric dis-
placement

D(z) = sOJw dt'e(t—1")E(t'), (18)

—o0

with the dielectric function
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©

e(t)=6(r) + %f dwd(w)0(t)——

0
ood ’ 2 % A
=f @ 1+—f dw% exp(—im't).
o 2T mJ, o — (0" +i7y)

It follows that the Fourier transform of the dielectric function
is given by

sm( wt)

2 [~ 7w’
é(w)=1+—j dw’%

), 0= (w+iy)
1(” 7w’ 1 1

[t
wJ, D) o' -w-iy o' +o+iy
1 1

:1+—f do’ O-(a: )f, (20)
7) s o o-w-iy

where it has been used that 6(w)=d(-w). Using that

1
w—1iy

=Pl +imdw), (21)
1)

where the capital “P” indicates the principal value, it follows
that

1 ) A ’ A
Ew)=1+ —Pf P CAR O
T J_. o' (0 - w) 10
2 o A ’ A
=1 +—Pf dw’%+ m(w). (22)
7T Jo 0w w I3)

By construction, this function satisfies the Kramers-Kronig
relations as well as the symmetry relation é(w)=£(-w)". As
a consequence, the dielectric function in the time domain is
real [e(f)=&(r)"] and causal [£(f)=0 if t<0]. This proves
that the constitutive relation for media with arbitrary disper-
sion and absorption is properly described by the present
model. As a consequence, the equations of motion for the
electromagnetic field in such media are formally equivalent
to the Euler-Lagrange equations for the proposed Lagrangian
density.

III. CONSERVATION LAWS

A. Energy

The transport and dissipation of electromagnetic energy is
described by the energy balance equation

UM +V - S=-Ww, (23)

where the electromagnetic field energy density u“™, energy
flux density S (Poynting vector), and the density of the rate
of work on the material subsystem W are defined by

E’>+ —B?, (24)

S=EXH, (25)

026606-3



SJOERD STALLINGA

W=dP-E. (26)

This energy balance equation follows directly from Max-
well’s equations [12].

It appears that the rate of work can be written as the time
derivative of a quantity that may be interpreted as the energy
of the material subsystem

o [~ «
P -E=—| dwi(w)dF-E
m™Jo

=% f dw6(w)9F - (97F + 0’F)
m™J0

- af[ %o f ’ dod(w)[(3F) + wze]] G
m™Jo

Here, the equation of motion of the material field F, Eq. (14),
is used to eliminate E in favor of F. The energy of the ma-
terial subsystem thus follows as

M =22 406 ()[(9F) + 0*F2]. (28)
™Jo

Conservation of energy of the total system is expressed by
du+V-S=0, (29)

where the total energy density is given by

M=MEM+M

MT

1 o0
S0pr, g0 J dod(0)[(6F)? + *F?].
2 2o m™Jo

(30)

The total energy is the sum of squares, and therefore always
positive, which guarantees thermodynamic stability. The
same energy conservation law has been found previously by
Tip [10], and by Glasgow, Ware, and Peatross by deduction
from Maxwell’s equations and the constitutive relation [18].

The total energy may be split into parts in a variety of
ways. A division between nondispersive and dispersive con-
tributions P and P may be defined by

1 1
WWP=-E-D+-H-B, (31)
2 2

uPs =20 f dwd(o)[(JF)*+ o’ F*-F-E], (32)
mJo
which gives rise to energy balance equations for the two
parts

Ju"P +V.S=-W', (33)

duPS=w', (34)

where the dissipation from the nondispersive to the disper-
sive energy density is given by
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8 o0

W = a,l = f dwd(w)[(JF)* + o’F>-F - E]
m™J0

1 1 1 1
=—9gP-E--P-JE=-dD-E--D-9E, (35)
2 2 2 2

where the equation of motion for the material field F has
been used, in a way similar to the derivation of Eq. (27). The
nondispersive to dispersive dissipation W'’ is approximately
zero in case dispersion is small. The total energy may then be
approximated by the nondispersive contribution #?. This
leads to the default expression for the electromagnetic energy
in a dielectric appearing in many textbooks [12,29].

B. Momentum

The transport and dissipation of electromagnetic (linear)
momentum is described by the momentum balance equation

98" + IpTh == fan (36)

where the momentum density g5, the momentum flux den-
sity (stress tensor) Tg%’ and the density of the force on the
material subsystem f,, are given by

ggM: 8OEaByEBBy’ (37)

1 e 1
TM = _ e0E,E5— —B +<—OE2+—B2)5 ,
ap =~ €oEoEp o oBp > 2o o

(38)

fa,= - &BP[;EQ + faBy&zPﬁBr (39)

These expressions correspond to the Abraham momentum
density, the Maxwell stress tensor, and the Lorentz force den-
sity. The momentum balance equation for the electromag-
netic field can be derived from Maxwell’s equations in a
straightforward manner [12].

The Lorentz force density can be written as the sum of
temporal and spatial derivatives. This implies the existence
of a momentum balance equation without a source term, i.e.,
an equation that expresses the conservation of the total mo-
mentum of the combined field-matter system. This rewriting
is done in a number of steps. First, using Faraday’s law it
follows that

fa=Ffo+ (€, PsB,) + 5;;(— E,Pg+ %E . P5a,3) ,
(40)
where
.1 1 1 1
fo= EPBﬁaEﬁ— EEB&aPﬁz EDBaaEB— EEBaaDB.
(41)

A second step is the use of the equation of motion for the
material field F, Eq. (14), in order to eliminate E in favor of
F in the expression for f7,
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! €0 - A
0

8 o0
=2 f dwd(w)(Fgdod, Fg— 0, F gdoF )
mJo

= (9[|:@J dwé‘(w)(FﬁﬁaélFlg— atFﬂaaFB):| . (42)
™Jo

A third step is rewriting this expression using the following
identity:

8 o]
0= aa{ =0 f dwd(w)(9Fp+ o*Fg— EE)FB}
m™Jo
€p * “ 2
m™Jo
+ Fpdad F g+ d,F g, F]

8 e
m™Jo

- aal@ f ) dod(w)[(3F)* - ’F* +F - E]] - (43)
m™Jo

This identity follows from the equation of motion of the
material field Eq. (14). This gives that

’ 280 ” A
fo=0| — | dwd(w)Fgd,dFg

™ Jo

- aa[ @r dwd(o)[(IF)? - *F> + F - E]] .
m™J0

(44)
The Lorentz force density can now be expressed as
fa=98a" +OpTag. (45)

where the material momentum density and momentum flux
density are given by

280 ” A
glgT= €ap P Byt 7j dwo‘(w)FBﬂaﬁ,Fﬁ, (46)
0

Q,

™ — _ EPs— @J dwé(w)[(4F)? - 0*F?] Oup
m™Jo

(47)

Conservation of momentum of the total system is expressed
by

(9,ga+ ﬁ.BTD‘ﬁ:O’ (48)

where the momentum density and stress tensor of the total
system are

2e0 [
8a= giM + gi‘:sz eaﬁ)’DﬁBJ’+ 7J dwa'(w)Fﬁ(?t&aFﬁ,
0

(49)
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1 1
Top=Thy +Tog=—EDg—H,Bg+ (515 D+ EH-B>5Q,3

) @f dos(@(FP - P F Bl (50
m™Jo

The total system momentum proposed here corresponds to
the pseudomomentum of Gordon [2], the wave momentum
of Nelson [3], and the canonical momentum of Garrison and
Chiao [4].

According to Nelson, the wave momentum is the sum of
momentum and pseudomomentum. The momentum contri-
bution from the material subsystem in the present theory
corresponds to Nelson’s pseudomomentum contribution to
the wave momentum. A difference with Nelson is in the gen-
eral form of the momentum density and stress tensor. These
quantities are not unique in the sense that terms can be
shifted from the density to the flux density and vice versa. In
particular, any multiple of the identity Eq. (43) can be added
or subtracted from the total momentum conservation law Eq.
(48). An example of such a redefinition of the momentum
density and stress tensor using the identity Eq. (43) is

’ 280 - A
8a= 6(1,3“/DﬁB’)’_ 7 dw(T(w)(?,Fﬁ(?aFB, (51)
0

, 1 1
Taﬂz_EﬂfDB_HUKBB-'_(EED+5HB>501B

L2 f dod(@)[(IF)? - 0*F2 +F-E]6,5 (52)
m™Jo

These forms correspond quite closely to the density and flux
density of wave momentum of Nelson [3]. Apparently, an
independent requirement is needed to justify the form of
these quantities. The point of view taken here is motivated
by an analysis of the relation between energy and momentum
of wave packets, and will be discussed in the next section. It
turns out that the present choice, Egs. (49) and (50), results
in transport of energy and momentum with the same velocity,
as opposed to the alternative choice, Egs. (51) and (52),
which leads to transport of energy and momentum at differ-
ent velocities [19]. Tt seems natural to have energy and mo-
mentum travel at the same speed, which implies that Egs.
(49) and (50) are the correct forms of the density and flux
density of the total momentum.

Similar to the energy case the total momentum can be
divided into nondispersive and dispersive parts, with densi-
ties

€= €Dy (53

ps_280 " .

e = | dwod(0)Fgd.0,Fg, (54)
™ Jo

and flux densities

D 1 1
wp = EaDg—H,Bg+ EE-D+5H-B Oup. (55)
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Toh=- f dwé(w)[(3F)> ~ 0*F> + F -E]8,5. (56)
m™Jo

The nondispersive contributions to the momentum density
and momentum flux density are recognized as the Minkow-
ski momentum density and the Minkowski stress tensor, re-
spectively. The momentum balance equations for the two
parts are

Igh” + dgTap =~ fa, (57)
38 + IgTos = frs (58)

where the Minkowski force density f/, is given by (41). This
force density is approximately zero when dispersion may be
neglected. In that case the total momentum may be approxi-
mated by the nondispersive (Minkowski) momentum. In
general, however, the dispersive terms need to be taken into
account. The importance of including dispersive contribu-
tions has also been stressed by Nelson [3] and Garrison and
Chiao [4].

C. Angular momentum

Our treatment of angular momentum will be brief, as it is
quite similar to the case of linear momentum treated previ-
ously. The angular momentum quantities are simply found
from the linear momentum quantities by taking the cross
product with the position vector.

An issue frequently popping up in discussions about an-
gular momentum conservation is the symmetry, or lack of it,
of the stress tensor. It appears that dispersion can result in an
asymmetric stress tensor, although the medium is isotropic.
This can be seen as follows. The dielectric displacement D at
a specific time ¢ depends on the electric field E at all previ-
ous times. The electric field at these times ¢’ <t is not nec-
essarily oriented in the same direction as the electric field at
time ¢. It follows that D and E at time ¢ are not necessarily
parallel, implying that the stress tensor defined by Eq. (50) is
generally asymmetric. This seemingly points to nonconser-
vation of angular momentum. However, it turns out that the
antisymmetric part of the stress tensor can be expressed as a
time derivative of a quantity, which may be interpreted as
contributing to the internal angular momentum

280 * . D)
€Q,B,},TB,Y= EO(,B’YPBE7= 7[0 dwa(w)eaByFB(&, F’)/+ Q)ZF),)

0

The internal angular momentum contribution depends on the
cross product of the material field and the time derivative of
the material field. It follows that this contribution is only
nonzero if the orientation of the fields changes with time,
which corroborates the qualitative argument given previ-
ously. An alternative, equally valid, way of dealing with this
asymmetry is to absorb it into a redefinition of the linear
momentum density.

Conservation of angular momentum is thus expressed by
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0Ja+&BMaB= 0, (60)

where the total angular momentum density and angular mo-
mentum flux density are given by

. 28 [~ A
Ja= €apyp8y+ _71- dwd(w)€,p,F o F (61)
0

Ma,B = Eap.Vr/.LTVB' (62)

Division of the total angular momentum into field and matter
contributions, and into dispersive and nondispersive contri-
butions are completely analogous to the linear momentum
case. A division into spin and orbital parts can be developed
along the lines of Refs. [20,21], but will not be pursued here.

IV. WAVE PACKETS

Certain interesting features of the auxiliary field model
become apparent when studying wave packets. In this sec-
tion, one-dimensional propagation along the z axis of a lin-
early polarized wave packet is considered. Then the electric
field only has a nonzero x component given by

©

E (z,1) = d—wf?(z, w)exp(—iot), (63)
oo 27T
where
E(z, ) = E(w)exp[ik(w)z]. (64)

Here E(w)=E(-w)", because E.(z,t) is real, and where the
(magnitude of) the wave vector is given by

k(w) = [n(w) +ix<w>]§, (65)

with n(w) the refractive index and x(w) the absorption coef-
ficient. These are related to the dielectric function by

8(w) = [n(w) +ix() P, (66)

so that the real and imaginary parts can be written as

& (w) =n(w)’ - k(w)*, (67)
&i(w) = ? =2n(w)k(w). (68)

The other field components of interest are

e}

D.(z,1) = sof ;iTa;é(w)E(z,w)exp(— iwt), (69)

—o0

* dwk(w) A
By(z,1) = poH,(z,1) = do k) )E(z,w)exp(— iot),
’ X )

(70)
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) d_a) 1 .

F(o',z,t)= E
o@',2) L 2mw'r—(w+iy)?

(z,w)exp(—iwt).

(71)

Using these expressions, the density and flow of energy and
linear momentum, and the density of the rate of work and
force can be calculated. The attention is restricted to energy
and linear momentum, as angular momentum does not play a
role for the wave packets under discussion.

In the following, the shorthand

“ (* dodw' A
fD(w,w’)f(w,w’)Ef J ((;ﬂ_(; flw,w")E(z,w)

XE(z,w')* expl—i(w— w")t],

(72)
will be used, which is convenient as most relevant quantities
are bilinear in field components. The integrand may be split
into parts flw,0")=f¢w,0")+fi(0,0"), where fyw,w’)
=fo(w,0)" and fy(w,0)=—f(0",0)". As D(w,o)
=D(w',w)" it follows that only the part fs(w, ") contributes
to the integral. This often helps to simplify equations.

A. Energy
For the field part of the energy density it is found that

1 1
utM = —soEx2 + —sz
2 2uy -

1 TRYTI
=% f D(w,0")[1+Vé(w)é(w)].  (73)
The material part is more involved

€p * A
M’ = _f dwy(wo)[(9,F)* + 0y F?]
0

T
1
= 580 J D(w,0")X(w,w'), (74)
with
X(w,w")
2 fw woz + oo’
= dw é‘-(00 ) . ’ .
wly 0 ey = (w+ iy e, - (0 —iy)’]

1 2 (7
= = dwys
(w+i7)2—(w'—i'y)27'rfo (1)00'((1)0)

[ w02 + wo’ w02 + wo' ]
X

0= (0+iy)? @ (0 —iy)?

1 oo
- 2| dwys
(0+ o) (w-o"+2iy) 'rrfo wod ()

(w+iy)?+ w0 (0 —iy)’+ oo’
a)oz— (w+ivy)?

0y’ = (@' —iy)*
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1 2 (~
———f dwyG{(w)

w-o +iymT

—00

X{ ) ~ ' }
woz— (w+ivy)? woz — (" —ivy)?
_ [8(w) - 1o-[8(w) -1]o’

w-o +iy
_ (ér(w)w— g(w)o' ~ 1) .

w—w'

i[6(w) + 6(w")]

w-o +iy

(75)

where it has been used that vy is infinitesimally small and
where the expression (20) for the dielectric function is used.
The total energy density may now be divided into two parts
in yet a third way, namely into a propagating and nonpropa-
gating part, the nonpropagating part being due to dissipation
alone

u=uR+ NP, (76)

where the propagating and nonpropagating parts are

1= o | | 20 gt

w-w
(77)
NP = lso f D(w,w')M. (78)
2 w—w +iy

The nonpropagating contribution may be further rewritten
using the Fourier representation of the step function

— - f ' ot expli(w—- '], (79)
w-o +iy J_,

to the time integral of the rate of work
t
uNP=f dar'w'(t"), (80)
where the rate of work is given by

1
W' = ESOID(w,w’)[&(w) +d(w)]. (81)

This may be written as the product of the dissipative part of
the current density and the electric field

W' =j(z,0)E(z,1), (82)

where the dissipative current density is given by

* dw ~
Jilz,0) = sof ;Té-(w)E(z, w)exp(—iwt). (83)

—00

This dissipative current density is the time derivative of the
dissipative part of the dielectric polarization, i.e., the part of
the dielectric polarization that involves only the imaginary
part of the susceptibility. The remaining, conservative part of
the dielectric polarization contributes to the energy of the
propagating wave. It follows that the nonpropagating part of
the total energy may be identified as the local energy of the
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continuous reservoir of oscillators into which the wave dis-
sipates energy. The reservoir gains energy by dissipation and,
because of causality, depends only on the electric fields at
previous times. The energy flux is directed along the z axis
and has a magnitude

1 *
S.= EsocJD(w,w’)[v%+ V()] (34)

It turns out that the nonpropagating energy density satisfies

lim «M =0, (85)

t——

o0 o) d .
lim " = f dr'W'=g, f Za;é'(w)|E(z,w)|2. (86)

1—+% —0 —

It follows that the loss in the propagating part of the energy
density over the total duration of the pulse is always positive,
as d(w) is positive for all w. This irreversibility is in agree-
ment with expectations. The integral of the propagating en-
ergy density and energy flux density over the duration of the
pulse follow as

J'dWM=%%f @{ﬂﬂgfﬂ+wmmbﬂaw

2

)

o o 27 dw
(87)
oo 0 d R
f diS. = egc f = ()| E(w). (88)
o oo 27T
Consider now a pulse
1 , 1 . .
E(z,1) = EEO(z,t)exp(— iwpt) + EEO(z,t) exp(imgt),
(89)

where ) is a carrier frequency and where E(z,1) is a slowly
varying envelope function for all z concerned. It then follows
that the spectrum E(z, ») has narrow peaks at ; so that the
dielectric function can be taken constant across the integra-
tion range. In this approximation the propagating energy, rate
of work, and energy flux density are given by

PR _ 18 d[ér((l)o)(l)o]

= Je0| T+ [#(wo) [Eo(z.0?,  (90)
0
’ 1 A 2
W' = 5800'((1)0)|E0(Z,f) > o1
! 2
SZ = ESOn(wo)C|E0(Z,f)| . (92)

If the absorption is small the nonpropagating contribution
may be neglected and the total energy (which is equal to the
propagating energy in this limit) may be approximated as
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d|n(wy) w dln(wy) wy] S
Anlonend g - Aol

b

u= Eson(wo)
(93)

proving that the energy of the wave packet travels at the
group velocity ¢/n,(w) with the group refractive index

ny(w)=——". (94)

It appears that E(z,7) is a slowly varying function if Ey(0,?)
is a slowly varying function, provided that z is sufficiently
small, irrespective of whether w is close to a resonance or
not [22]. In this transparency regime the group velocity can
exceed the speed of light in vacuum and can even be nega-
tive, as demonstrated experimentally in Ref. [23]. The arrival
time of a pulse can be given a well-defined meaning, even in
these exotic regimes [24]. In turn, if z is sufficiently large
Ey(z,1) cannot be a slowly varying function, even if Ey(0,)
is, and if w, is far away from a resonance. In this latter
regime, the asymptotic regime, a different treatment is
needed [25,26].

B. Momentum

The nondispersive (Minkowski) part of the momentum
density is given by

g?=m%=%f0ww%aw%mf+awﬁ@51
(95)

The dispersive part of the momentum density is

2¢e0 [
DS = =0 dwo&(wo)Fx&tazFx
m™ Jo

2

2 f D(w,0")Y(0,0")[Vé(0) o>+ V8(w') '],
2¢

(96)
with

Y(w,w")

o 1
= _J dwo(a'(a)o)
mJ

) [0y’ — (0 + iy ][0y - (' - i7)]
_ é(w) - é(w")"
(w+ o) (w-w +iy)
3 1
T (w+ o) w-o + iy)

X{é,(w)—é,(w’)+i(M+La:/)>]. (97)
w w

The total momentum can be rewritten using
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\"/é(a))a)2 + \r’/é(w’)*w’z

(w+ o) (w-w +iy)
Vé(w) o+ Vé(w) o Véwo-Véw') o
= +

- +iy

k)

w+ o

(98)

so that a division of total momentum into propagating and
nonpropagating parts

g.=gR+ g, (99)

can be made, such that

grt= :_2 f D(w,w'){2\’/é(w)é(w')*[\/é(w) +V8(0')']

() - &,(w')

_a),

[Vé(w)o +VE(0) o']

+ M[\'%w— Vé(@) '], (100)

w+o

i[6(w)/w+ 6(w')/o’
gyp=:—ng(w,w')l[o-(w)w G(w')lw']

X[Vé(w)o + V8(0') ']

w-o +iy

=22 [ (oo IO ) ]

— — lE(w
4c w—o' +iy

(101)

The nonpropagating momentum density may be written as
the integral of the force density

g = J t dr'fi(t"), (102)

—0

with

! € ’ A A ’ | A A 2%
= J D(0.0")[6{w) + 6" N&(w) + V&(w)]

(103)
The flow of z momentum in the z direction is given by the

sum of the nondispersive (Minkowski) stress tensor compo-
nent

1 1
'D
TP = S EuD+ S H,B,

1 * I - %
= €0 J D(w, 0" )[é(w) +é(w') +2Vé(w)é(w') ],
(104)

and the dispersive stress tensor component
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o [© .
Ty =-—_ f dond(w)[(GF,) - 0 F,2 + F,E,]
0

- f D(w.0)0(w.0"). (105)

with

O(w,0")
2 (7 0o’ + o,
=— dwyo(wy)| 2
Wfo o6t 0){ [0y = (0+i7) 0y - (@ —ip)?]

1 1
T - (w+iy)? @ - (w+iy)2}

2 (~ . (0-')?
= — dwyd(w
wJO e (s iy (@~ 9]
=—(w—w')—é(w)_é(:u,)v
0+

The zz component of the total stress tensor then follows as

T = }180 f D(w,w’)(é(w) +8(w) +2Vé(w)é(w')"

_2((0—(1)')M)- (106)
w+w
The nonpropagating momentum density satisfies
lim g"'=0, (107)
f——00
o] o d R
lim givp=f ar'fl = @f —w&(w)n(w)|E(z,w) 2,
f—+00 _» C J_» 2’7T
(108)

from which it may be concluded that the dissipation of
propagating momentum integrated over the entire pulse is
always positive. Each Fourier component of the integrated
momentum dissipation is a factor n(w)/c times the Fourier
component of the integrated energy dissipation. The time in-
tegral of the propagating momentum density and flux density
are

- 1 1 dé(w)
L‘”gz =:J_wﬁ{'8(“’)""<‘°>2+zww

Xn(w)|E(z, )2

% J . d_w[w . |§<w>|}n<w>|é<z,w>

2
2c) o 2m dw ’

(109)
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” 1 (7 do_, A .
[ ar=te| 2w+ soicor
e 2 7). 2w

= eof d—wn(a))2|é(z,w)|2. (110)
o 27T
Similar to the dissipation of energy it follows that each Fou-
rier component of the integrated density and flux density of
the propagating momentum is a factor n(w)/c times the Fou-
rier component of the integrated density and flux density of
the propagating energy. It is this relation between energy and
momentum that has motivated the choice of the density and
flux density of momentum given by Egs. (49) and (50) over
the forms given in Egs. (51) and (52). It is mentioned that the
dispersive momentum flux density does not contribute to the
time integral of the total momentum flux density, the only
nonzero contribution comes from the nondispersive
(Minkowski) stress tensor.
For the narrow-band pulse it is found that

pr_ 1 80| dl& (@) wo]

_ 2
© 2c dw, ’

+ |&(wp)| [n(wo)|Eg(z,1)

(111)

i 1 €0 . 2
fi= E?U'(wo)n(wo)mo(z,tﬂ , (112)
7. = Senlon oz 0 (113)

If the absorption is small the nonpropagating momentum
density may be neglected, and the total momentum may be
approximated as

1 d[n(wo) wo]

dln(wp)wy] T,
= Seonlag Ll o D]

dwyg dw, c
(114)

proving that the momentum of the wave packet travels at a
speed equal to the group velocity, just as the energy. The
ratios of the density, flux density, and dissipation of energy
and the density, flux density, and dissipation of momentum
are all equal to

S s v e
ng gleP T, ]dz, ”(wo)’

i.e., the ratio between total energy and total momentum of
the wave packet is equal to the phase velocity.

V. DISCUSSION

The momentum conservation law that has been derived in
this paper applies to homogeneous dielectrics only, as defor-
mations of the medium are excluded from the start. A more
general theory should address the deformability of the mate-
rial medium. Then the kinetic energy, kinetic momentum,
hydrostatic forces (for fluids), and elastic forces (for solids),
and effects such as electrostriction (change in density as a
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function of the electric field) need to be taken into account
[27-29]. This would also give rise to separate conservation
laws for momentum and pseudomomentum as then there are
two independent continuous translation symmetries, one re-
flecting uniformity of space and one reflecting homogeneity
of matter in the undeformed reference state.

Instead of such a first principles approach we may also
introduce inhomogeneity in an ad hoc manner by making the
conduction function space dependent, i.e., by replacing 6(w)
by 6(r,w) everywhere. This does not alter the equations of
motion of the model, nor the expression of the conservation
of energy. The total momentum is no longer conserved be-
cause of the broken translational symmetry (the Lagrangian
density depends explicitly on the spatial coordinates). It turns
out that now
inh (116)

a

&tga + 55Taﬁ =—-

where the dissipation of momentum due to the inhomogene-
ity is given by

fi =~ & f dwd, 6(r,0)[(3F)* - 0*F?>+2F - E].
m™Jo

(117)

The implication is that inhomogeneities are accompanied by
forces on the system. As a consequence, the total field-plus-
matter system considered so far must be an open system, as
external forces are needed to maintain the static inhomoge-
neity of the system when an electromagnetic field is applied.
These external forces can be identified as the mechanical
forces that have been excluded from the description in the
beginning. The open character of the system has also been
noticed by Garrison and Chiao as important for the applica-
bility of the total momentum [4].

An explicit expression for the force density may be found
in the Fourier domain (similar to the expressions derived for
the wave packets studied in Sec. IV)

dr,wo +ér,0) w

)

w+ o

. 1
f;’h =— Eso J D(r, w,w’)ﬁa{

(118)
where the shorthand D(r,w, ') is defined by

“ (” dwdw' .
fD(r,w,w’)f(w,w’)EJ f 2m)? flw,0")E,(r,»)

XE (r,0")" exp[-i(w—w')].
(119)

This gives the time integral

* . 1 “d
f dift = -~ f 2B (r,0)20,8,(r.0), (120)
-0 2 _o 2T

so that the dissipation of momentum integrated over the du-
ration of the interaction between the medium and the elec-
tromagnetic field is proportional to the spectral average of
the product of the square of the electric field and the gradient
of the real part of the dielectric function. This agrees with the
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Helmholtz force expression when the latter is restricted to
static incompressible media [27,28].

Of particular importance is the case of an interface be-
tween two otherwise homogeneous media. According to
(116) the stress tensor must be discontinuous across the in-
terface. This discontinuity is restricted to the flux across the
interface of the momentum component normal to the inter-
face. The flux across the interface of momentum components
parallel to the interface is continuous due to the continuity
requirements of the different fields (parallel components of E
and H continuous, normal component of D and B continu-
ous). The discontinous flux of normal momentum must be
balanced by a mechanical flux of normal momentum, such as
a pressure difference between the two media. The total force
exerted by the first medium on the adjacent second medium
is found by evaluating the stress tensor at the interface in the
first medium. A similar view is found in Landau and Lifshitz
[29], where it is shown that in the electrostatic limit the
Minkowski stress tensor must be used to calculate the ther-
modynamic equilibrium forces on a dielectric body. The
same conclusion is obtained by Gordon for optical frequen-
cies and negligible dispersion [2]. Both results are general-
ized to arbitrary dispersive and absorbing media if the flux
density of the total momentum (50) is used to calculate the
force on a dielectric body.

According to a different point of view, the Lorentz force
is the basic quantity, and the force on a dielectric body is
found by integrating this force over the volume of the body
[5-8]. This approach is equivalent to using the Abraham mo-
mentum and the Maxwell stress tensor. A variation of this
approach is due to Mansuripur [8] who argues that a me-
chanical momentum density, equal to P XB/2 in media with
small dispersion and dissipation, accompanies a pulse of
light in a dielectric, and that this contribution should count as
electromagnetic momentum as well. It follows that the total
momentum is then the average of the Abraham and
Minkowski forms. The evaluation of radiation forces from
the Lorentz force does not depend on this interpretation of
what the total electromagnetic momentum is. The two views
on how radiation forces should be calculated are incompat-
ible in some cases, notably the case of a dielectric slab im-
mersed in a different dielectric, and can thus be tested ex-
perimentally. This variation on the Jones-Leslie experiment
[30] will be discussed in a separate paper.
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An important result of this paper is that the ratio of the
total energy and total momentum is given by the phase ve-
locity. This is consistent with the assignment of an energy
E=%w and momentum p=#k to a single photon (k is the
wave vector in the medium), which gives E/p=w/k=c/n.
This suggests that in the quantized version of the auxiliary
field model the total momentum proposed here should corre-
spond to a momentum 7k per quantum. Garrison and Chiao
argue that this is the case based on the requirement that the
total electromagnetic momentum operator should be the gen-
erator of translations [4]. The ratio between energy and mo-
mentum being the phase velocity agrees with the phase-
matching condition in spontaneous down conversion [3,4],
with experiments on the photon drag effect in semiconduc-
tors (see discussion in [6]), and recently with experiments on
the recoil of an atom in a Bose-Einstein condensate when it
absorbs a photon [31]. This perspective on photon momen-
tum may be tested theoretically by using the well-developed
quantum theory of light in dielectric media [10,14-17,32,33]
to find out if indeed the proposed total momentum corre-
sponds to zk per photon. It is mentioned that this also offers
a look on the Casimir effect in general linear dielectrics. In
contrast to the use of the Minkowski or Maxwell stress ten-
sor [34], it may well be that the flux density of the total
momentum is the relevant quantity for calculating the Ca-
simir force.

Finally, it is mentioned that the auxiliary field model can
be extended in a number of ways. A generalization to de-
formable media has been mentioned already. A derivation of
the model from microscopical principles, including statistical
mechanical principles to incorporate dissipation, would jus-
tify the use of the auxiliary field model and elucidate the
circumstances under which the model can be applied to de-
scribe experimental results. Other applications of the auxil-
iary field model are in the description of other types of me-
dia, in particular anisotropic and bianisotropic media,
spatially dispersive media, and nonlinear media.
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